5G Toolkit Logo
R24a.0.3

Contents:

  • Release Notes
  • Install 5G Toolkit
    • System Requirements:
    • Dependent Libraries
    • Install Miniconda
    • Install Jupyter Notebook
    • Install 5G Toolkit
    • Final Confirmation
    • License 5G Toolkit
    • Activate the 5G Toolkit License
    • Installation Tutorial: Video
  • Getting Started
    • Understanding API Documentation
    • Hello World!
      • Import Python Libraries
        • How to import 5G Toolkit Libraries
        • Create Objects for all the Modules
        • Generate Payload bits and Encode them
        • Symbol Mapping the Encoded Bits
        • Pass through AWGN Channel
        • Demapping the Symbols
        • Detect Error in the Blocks
        • Compute Bit and Block Error Rate
        • Constellation Diagrams at the Tx and Rx
        • Link Level Simulation
        • Bit/Block Error Rate Performance
    • Resources and Scripts
  • API Documentation
    • Sequence Generation
      • Primary Synchronization Signal
        • PSS
      • Secondary Synchronization Signal
        • SSS
      • Demodulation Reference Sequence (DMRS)
        • DMRS
      • Positioning Reference Sequence (PRS)
        • PRS
      • Channel State Information Reference Sequence (CSI-RS)
        • CSIRS
      • Sounding Reference Sequence (SRS)
        • SRS
          • SRS.lengthOfSequence
          • SRS.nrOfCyclicShift
          • SRS.nrofSymbols
          • SRS.sequenceId
          • SRS.slotIndex
          • SRS.startPosition
          • SRS.symbolIndices
          • SRS.transmissionComb
      • Pseudo Random (PN) Sequence
        • PNSequence
      • PUCCH Format 0 Sequence
        • PUCCHFormat0Sequence
          • PUCCHFormat0Sequence.controlInfo
          • PUCCHFormat0Sequence.indexPUCCH
          • PUCCHFormat0Sequence.initial_CyclicShift
          • PUCCHFormat0Sequence.m_CS
          • PUCCHFormat0Sequence.nID
          • PUCCHFormat0Sequence.numBatches
          • PUCCHFormat0Sequence.numInterlacedRBs
          • PUCCHFormat0Sequence.numRBs
          • PUCCHFormat0Sequence.numberOfSymb
          • PUCCHFormat0Sequence.pucch_GroupHopping
          • PUCCHFormat0Sequence.seqNumber
          • PUCCHFormat0Sequence.slotNumber
          • PUCCHFormat0Sequence.start_SymbIndex
      • PUCCH Format 1 Sequence
        • PUCCHFormat1Sequence
          • PUCCHFormat1Sequence.indexPUCCH
          • PUCCHFormat1Sequence.initial_CyclicShift
          • PUCCHFormat1Sequence.m_CS
          • PUCCHFormat1Sequence.maxNumPRBs
          • PUCCHFormat1Sequence.nHop
          • PUCCHFormat1Sequence.nID
          • PUCCHFormat1Sequence.numInterlacedRBs
          • PUCCHFormat1Sequence.numRBs
          • PUCCHFormat1Sequence.numberOfSymb
          • PUCCHFormat1Sequence.pucch_GroupHopping
          • PUCCHFormat1Sequence.slotNumber
          • PUCCHFormat1Sequence.start_SymbIndex
      • Low PAPR Sequence Type 1
        • LowPAPRSequenceType1
          • LowPAPRSequenceType1.baseSequenceNumber
          • LowPAPRSequenceType1.cyclicShift
          • LowPAPRSequenceType1.delta
          • LowPAPRSequenceType1.groupNumber
          • LowPAPRSequenceType1.lengthOfSequence
          • LowPAPRSequenceType1.numRBs
      • Low PAPR Sequence Type 2
        • LowPAPRSequenceType2
          • LowPAPRSequenceType2.cinit
          • LowPAPRSequenceType2.delta
          • LowPAPRSequenceType2.groupNumber
          • LowPAPRSequenceType2.groupNumber_Or_cinit
          • LowPAPRSequenceType2.lengthOfSequence
          • LowPAPRSequenceType2.numRBs
      • Primary Synchronization Signal for Sidelink (S-PSS)
        • S_PSS
      • Secondary Synchronization Signal for Sidelink (S-SSS)
        • S_SSS
    • Resource Mapping
      • Synchronization Signal Block (SSB) Grid Generation
        • SSB_Grid
          • SSB_Grid.displayGrid()
          • SSB_Grid.dmrsIndices
          • SSB_Grid.pbchIndices
          • SSB_Grid.pssIndices
          • SSB_Grid.sssIndices
      • Synchronization Signal Block (SSB) Resource Mapping
        • ResourceMapperSSB
      • Physical Downlink Shared Channel-DMRS
        • ResourceMapperDMRSPDSCH
          • ResourceMapperDMRSPDSCH.displayCDMPattern()
          • ResourceMapperDMRSPDSCH.displayResourceGrid()
      • Physical Downlink Shared Channel-PTRS
        • ResourceMapperPTRSPDSCH
      • Physical Downlink Control Channel (PDCCH)
        • ResourceMappingPDCCH
      • Control Resource Set
        • CORESET
          • CORESET.displayCoresetREG_CCE_Mapping()
      • Search Space Set
        • SearchSpaceSet
      • Channel state Information reference signal (CSI-RS)
        • ResourceMapperCSIRS
          • ResourceMapperCSIRS.displayCDMPattern()
          • ResourceMapperCSIRS.displayResourceGrid()
      • Positioning Reference Signal (PRS)
        • ResourceMapperPRS
      • Physical Uplink Control Channel (PUCCH)
        • PUCCH Format-0
          • PUCCH Format 0 Resource Mapping
          • PUCCH Format 0 Resource De-Mapping
        • PUCCH Format-1
          • PUCCH Format-1 Resource Mapping
          • PUCCH Format-1 Resource De-Mapping
          • PUCCH Format-1 Spreading
          • PUCCH Format-1 De-Spreading
        • PUCCH Format-2
        • PUCCH Format-3
        • PUCCH Format-4
      • Sidelink Synchronization Signal Block (SSB) Grid Generation
        • SSSB_Grid
          • SSSB_Grid.displayGrid()
      • Physical Sidelink Control Channel (PSCCH)
        • ResourceMappingPSCCH
    • Physical Channels
      • Physical Downlink Shared Channel (PDSCH)
        • PDSCH Transmitter
          • PDSCH: Upper Physical layer Chain
          • PDSCH: Lower Physical layer Chain
        • PDSCH Receiver
          • PDSCH: Upper Physical layer Chain Decoder
          • PDSCH: Lower Physical layer Chain Decoder
        • PDSCH Components
          • Transport Block Size Computation
          • Transport Block Processing
          • Code Block Segmentation
          • Low Density Parity Check Codes
          • Rate Matching
          • Code Block Concatenation
          • Scrambling: PDSCH
          • Modulation
          • Layer Mapper
          • Physical Downlink Shared Channel-DMRS
      • Physical Downlink Control Channel (PDCCH)
        • PDCCH Transmitter
          • PDCCH
        • PDCCH Receiver
          • PDCCHDecoder
        • PDCCH Components
          • Cyclic Redundency Check
          • RNTI Masking
          • Input Bit Interleaver
          • Polar Coder
          • Rate Matching
          • Scrambling: PDCCH
          • Modulation
      • Physical Broadcast Channel (PBCH)
        • PBCH Transmitter
          • PBCH
        • PBCH Receiver
          • PBCHDecoder
        • PBCH Components
          • Cyclic Redundency Check
          • RNTI Masking
          • Input Bit Interleaver
          • Polar Coder
          • Rate Matching
          • Scrambling: PDCCH
          • Modulation
      • Physical Uplink Shared Channel (PUSCH)
      • Physical Uplink Control Channel (PUCCH)
        • PUCCH Format 0
        • PUCCH Format 1
        • PUCCH Format 2
        • PUCCH Format 3
        • PUCCH Format 4
      • Physical Random Access Channel (PRACH)
      • Physical Sidelink Broadcast Channel (PSBCH)
        • PSBCH Transmitter
          • PSBCH
        • PSBCH Receiver
          • PSBCHDecoder
        • PSBCH Components
          • Cyclic Redundency Check
          • RNTI Masking
          • Input Bit Interleaver
          • Polar Coder
          • Rate Matching
          • Scrambling: PDCCH
          • Modulation
      • Physical Sidelink Control Channel (PSCCH)
        • PSCCH Transmitter
          • PSCCHUpperPhy
          • PSCCHLowerPhy
        • PSCCH Receiver
          • PSCCHUpperPhyDecoder
          • PSCCHLowerPhyDecoder
        • PSCCH Components
          • Cyclic Redundency Check
          • Input Bit Interleaver
          • Polar Coder
          • Rate Matching
          • Scrambling: PDCCH
          • Modulation
    • Payload Generation
      • Master Information Block (MIB)
        • MIB Generation
          • MIBGeneration
        • MIB Extraction
          • MIBExtraction
      • Downlink Control Information (DCI)
        • DCIGeneration
        • DCIExtraction
    • Forward Error Correction
      • Hamming Coder
        • Hamming coder
          • HammingEncoder
        • Hamming Decoder
          • HammingDecoder
        • Hamming Decoder - Sphere Decoding
          • HammingSphereDecoder
        • Hamming Decoder - Syndrome Based Decoding
          • HammingSyndromeDecoder
      • Low Density Parity Check Codes
        • LDPC Encoder
          • LDPCEncoder5G
        • LDPC Decoder
          • LDPCDecoder5G
        • LDPC Codec Subcomponents
          • LDPC Parameters Computation
          • Codeblock Processing: Transmitter
          • Codeblock Processing: Receiver
      • Polar Codes
        • Polar Encoder
          • PolarEncoder5G
        • Polar Decoder
          • PolarDecoder5G
        • Polar Codec Components
          • Code-block Processing: Transmitter
          • Code-block Processing: Receiver
          • Input Bit Interleavers
      • Reed Muller Codes
        • Reed Muller Encoder 5G
          • ReedMullerEncoder5G
        • Reed Muller Decoder 5G
          • ReedMullerDecoder5G
    • Rate matching
      • Rate matching for LDPC
        • Bit Selection for LDPC
          • Bit Selection
          • Bit De-selection
        • Bit Interleaver for LDPC
          • Bit Interleaver
          • Bit De-interleaver
        • RatematchParameters
          • RatematchParameters.baseGraph
          • RatematchParameters.enableLBRM
          • RatematchParameters.k0
          • RatematchParameters.liftingFactor
          • RatematchParameters.modOrder
          • RatematchParameters.numCodeBlocks
          • RatematchParameters.numCodedBits
          • RatematchParameters.numLayers
          • RatematchParameters.rvID
          • RatematchParameters.tbSize
      • Rate matching for Polar coder
        • Sub Block Interleaver for Polar Coder
          • Sub-block Interleaver
          • Sub-block De-interleaver
        • Bit Selection for Polar Coder
          • Bit Selection
          • Bit De-selection
        • Channel Interleaver for Polar Coder
          • Channel Interleaver
          • Channel De-interleaver
    • Interleavers
      • PBCH Interleaver
        • PBCH Interleaver
          • PBCHInterleaver
        • PBCH DeInterleaver
          • PBCHDeInterleaver
      • Input Bit Interleaver
        • Input Bit Interleaver
          • InputBitInterleaver
        • Input Bit DeInterleaver
          • InputBitDeInterleaver
      • Sub Block Interleaver
        • Sub Block Interleaver
          • Subblock_Interleaver
        • Sub Block Interleaver
          • Subblock_DeInterleaver
      • Channel Interleaver
        • Channel Interleaver
          • ChannelInterleaver
        • Channel De-interleaver
          • ChannelDeInterleaver
      • Bit Interleavers
        • Bit Interleaver
          • BitInterleaver
        • Bit Deinterleaver
          • BitDeinterleaver
    • Orthogonal Frequency Division Multiplexing
      • OFDM: Demodulator
        • OFDMDemodulator
      • OFDM: Modulator
        • OFDMModulator
      • Transform Decoding
        • TransformPrecoding
      • Transform Decoding for 5G
        • TransformDecoding5G
      • Transform Precoding
        • TransformPrecoding
      • Transform Precoding for 5G
        • TransformPrecoding5G
    • Channel Processing and Hardware Impairment
      • Apply Channel to Transmitted Signal
        • ApplyChannel
          • ApplyChannel.enableInterTxInterference
          • ApplyChannel.isFrequencyDomain
          • ApplyChannel.memoryConsumptionLevel
      • Add Noise and CFO at Receiver
        • AddNoise
    • Symbol Mapping
      • Mapper
        • Mapper
      • Demapper
        • Demapper
    • Scrambling
      • Scrambler
        • Scrambler
          • Scrambler.Lmax
          • Scrambler.c_init
          • Scrambler.id
          • Scrambler.mu
          • Scrambler.nID
          • Scrambler.purpose
          • Scrambler.q
          • Scrambler.rnti
          • Scrambler.ssbIndex
      • Descrambler
        • DeScrambler
          • DeScrambler.Lmax
          • DeScrambler.c_init
          • DeScrambler.id
          • DeScrambler.mu
          • DeScrambler.nID
          • DeScrambler.purpose
          • DeScrambler.q
          • DeScrambler.rnti
          • DeScrambler.ssbIndex
      • RNTI Masking
        • RNTImasking
          • RNTImasking.rnti
    • Channel Models
      • Antenna Array
        • AntennaArrays
        • Antenna Elements
          • 3GPP_38_901 Antenna Element
          • Hertzian Dipole Antenna Element
          • Linear Dipole Antenna Element
      • Node Mobility
        • NodeMobility
          • NodeMobility.displayRoute()
        • Mobility Models
          • Random-Walk
          • Circular Route
          • Vehicle Drops on HighWays
      • Simulation Layout
        • SimulationLayout
          • SimulationLayout.BSLocations
          • SimulationLayout.ISD
          • SimulationLayout.UELocations
          • SimulationLayout.UEdistibution
          • SimulationLayout.UEheightDistribution
          • SimulationLayout.bsAntennaArray
          • SimulationLayout.bsRoute
          • SimulationLayout.carrierFrequency
          • SimulationLayout.clutterDensity
          • SimulationLayout.clutterHeight
          • SimulationLayout.clutterSize
          • SimulationLayout.correlationDistanceIndoor
          • SimulationLayout.correlationDistanceLoS
          • SimulationLayout.correlationTypeIndoor
          • SimulationLayout.correlationTypeLoS
          • SimulationLayout.enableSpatialConsistencyIndoor
          • SimulationLayout.enableSpatialConsistencyLoS
          • SimulationLayout.force3GPPSpatialConsistencyParameters
          • SimulationLayout.forceLOS
          • SimulationLayout.heightOfBS
          • SimulationLayout.heightOfRoom
          • SimulationLayout.heightOfUE
          • SimulationLayout.indoorUEfraction
          • SimulationLayout.layoutLength
          • SimulationLayout.layoutType
          • SimulationLayout.layoutWidth
          • SimulationLayout.lengthOfIndoorObject
          • SimulationLayout.maxNumberOfFloors
          • SimulationLayout.memoryEfficient
          • SimulationLayout.minNumberOfFloors
          • SimulationLayout.minUEBSDistance
          • SimulationLayout.numOfBS
          • SimulationLayout.numOfSectorsPerSite
          • SimulationLayout.numOfSnapShots
          • SimulationLayout.numOfUE
          • SimulationLayout.radiusForCircularUEDrop
          • SimulationLayout.routeType
          • SimulationLayout.terrain
          • SimulationLayout.ueAntennaArray
          • SimulationLayout.ueDropMethod
          • SimulationLayout.ueRoute
          • SimulationLayout.widthOfIndoorObject
        • BS Layouts
          • Hexagonal Layout
          • Rectangular Layout
        • UE Drops
          • Rectangular Drop
          • Circular Drop
          • Hexagonal Drop
      • Channel Parameter Generator
        • ParameterGenerator
      • Channel Generator
        • ChannelGenerator
    • MIMO Processing
      • Code-Books
        • Type-1 Code-Book
          • TypeICodeBook
          • SearchFree
    • Scheduler
      • PDCCH Scheduler
        • PDCCHScheduler
      • Link Adaptation
        • LinkAdaptation
          • LinkAdaptation.selectMCS()
      • Rank Adaptation
        • RankAdaptation
      • Round Robin Scheduler
        • RoundRobinScheduler
          • RoundRobinScheduler.firstAcrossTime
          • RoundRobinScheduler.numRB
          • RoundRobinScheduler.numSymbol
          • RoundRobinScheduler.numUEscheduledAcrossFreq
          • RoundRobinScheduler.numUEscheduledAcrossTime
    • Cyclic Redundancy Check
      • CRC Encoder
        • CRCEncoder
      • CRC Decoder
        • CRCDecoder
    • Receiver Algorithms
      • Carrier Frequency Offset (CFO) Estimation
        • CarrierFrequencyOffsetEstimation
      • Channel Estimation and Symbol Equalization for PBCH
        • ChannelEstimationAndEqualizationPBCH
      • Channel Estimation and Symbol Equalization for PDCCH
        • ChannelEstimationAndEqualizationPDCCH
      • Channel Estimation and Symbol Equalization for PDSCH
        • ChannelEstimationAndEqualizationPDSCH
      • SSB Parameters Estimation
        • DMRSParameterDetection
      • Time Synchronization and PSS/Cell ID-2 Detection
        • PSSDetection
      • SSS/Cell ID-1 Detection
        • SSSDetection
      • Downlink Channel Estimation using CSI-RS
        • ChannelEstimationCSIRS
      • Uplink Channel Estimation using SRS for Positioning
        • ChannelEstimationSRS
    • Position Estimation
      • Position Estimation
        • PositionEstimation
      • Submodules
        • Time of Arrival (ToA)/Delay Estimation
          • ToAEstimation
          • DFT based Method
          • ESPRIT based ToA Estimation
          • MUSIC based ToA Estimation
        • Direction of Arrival Estimation
          • DoAEstimation
          • DFT based AoA Method
          • ESPRIT based DoA Estimation
          • MUSIC based DoA Estimation
        • Optimization Algorithms
          • Least Squares based Position Estimator for TDoA
          • Gradient Descent based Position Estimator for TDoA
          • Newton Raphson based Position Estimator for TDoA
          • Least Squares based Position Estimator for ToA/mRTT
          • Least Squares based Position Estimator for DoA
          • Gradient Descent based Position Estimator for DoA
          • Least Square based Position Estimator for Hybrid ToA/mRTT and DoA
          • Least Square based Position Estimator for Hybrid TDoA and DoA
    • 5G Configurations
      • Channel state information reference signal (CSI-RS) Configurations
        • CSIConfiguration
      • SSB/PBCH Configurations
        • GenerateValidSSBParameters
      • PDSCH Lower Physical Layer Configurations
        • PDSCHLowerPhyConfiguration
      • PDSCH Upper Physical Layer Configurations
        • PDSCHUpperPhyConfiguration
      • Sounding Reference Signal (SRS) Configurations
        • SRSConfiguration
          • SRSConfiguration.bHop
          • SRSConfiguration.bSRS
          • SRSConfiguration.betaSRS
          • SRSConfiguration.cSRS
          • SRSConfiguration.combOffset
          • SRSConfiguration.enableStartRBHopping
          • SRSConfiguration.freqDomainPosition
          • SRSConfiguration.freqDomainShift
          • SRSConfiguration.freqScalingFactor
          • SRSConfiguration.groupOrSequenceHopping
          • SRSConfiguration.lengthOfSequence
          • SRSConfiguration.nrOfCyclicShift
          • SRSConfiguration.nrofSRS_Ports
          • SRSConfiguration.nrofSymbols
          • SRSConfiguration.offsetInSlots
          • SRSConfiguration.periodicityInSlots
          • SRSConfiguration.purpose
          • SRSConfiguration.repetitionFactor
          • SRSConfiguration.resourceGridSizeinRBs
          • SRSConfiguration.resourceType
          • SRSConfiguration.sequenceId
          • SRSConfiguration.slotIndex
          • SRSConfiguration.startPosition
          • SRSConfiguration.startRBIndex
          • SRSConfiguration.symbolIndices
          • SRSConfiguration.systemFrameNumber
          • SRSConfiguration.transmissionComb
      • SSB/PBCH Configurations
        • SSBConfiguration
      • Time-Frequency 5G-Configurations
        • TimeFrequency5GParameters
          • TimeFrequency5GParameters.getGaurdBand_FR1()
          • TimeFrequency5GParameters.getGaurdBand_FR2()
          • TimeFrequency5GParameters.getNumberRB_FR1()
          • TimeFrequency5GParameters.getNumberRB_FR2()
  • Tutorials
    • Hamming Codes
      • Import Libraries
        • Python Libraries
        • 5G Toolkit Libraries
      • Hamming Codes Parameters
      • Simulation Setup
      • Performance Evaluation: SNR vs BER
      • Performance Evaluation: SNR vs BLER
      • Conclusions
    • Reed Muller Codes in 5G
      • Table of content:
      • Import Libraries
        • Python Libraries
        • 5G Toolkit Libraries
      • Mapper and Demapper Parameters
      • Simulation Parameters
      • Simulation
      • Performance Evaluation
        • Performance Plot: Averaged over 65 datasets of 5000 points each.
    • Polar Codes in 5G
      • Table of content:
      • Import libraries
        • Python Libraries
        • 5G Toolkit libraries
      • Symbol Mapping Configurations
      • Polar Coder Configurations
      • Simulation: AWGN Channel
      • Performance Evaluations
      • Performance Evaluations: Averaging over a 100 dataset of 100 points each
    • Low Density Parity Check (LDPC) Codes in 5G
      • Import Libraries
        • Python LIbraries
        • 5G Toolkit Libraries
      • Symbol Mapping Configurations
      • Simulation: Variation in Reliability with code-rate for fixed block-length
        • LDPC Parameters
        • Simulation Procedure
      • Performance Evaluation: BER vs SNR for different code-rates
      • Simulation: Variation in Reliability with block-length for fixed coderate
      • Performance Evaluation: BER vs SNR for different block lengths
      • Following results are averaged over 100 results
        • BER vs SNR
      • BER vs TB-size
    • Performance comparison of OFDM and DFT-s-OFDM in 5G Networks
      • Import Libraries
        • Import Python Libraries
      • Import 5G-Toolkit Libraries
      • Simulation Parameters
      • Peak to Average Power Ratio (PAPR) Analysis
        • PAPR Analysis: CP-OFDM
        • PAPR Analysis: DFT-s-OFDM
      • PAPR Performance Comparison: CP-OFDM vs DFT-s-OFDM
      • ACLR Analysis: CP-OFDM vs DFT-s-OFDM
      • ACLR Comparison of OFDM and DFT-s-OFDM
      • References
    • Detailed Tutorials on 3GPP Channel Models
      • Wireless Channel Generation for Outdoor Terrains deployed in Hexagonal Geometry
        • Import Libraries
          • Import Python Libraries
          • Import 5G Toolkit Libraries
        • Simulation Parameters
        • Generate Antenna Arrays
        • Generate Simulation Layout
        • Generate Channel Parameters
        • Generate Channel Coefficients
        • Generate OFDM Channel
          • Frequency Domain : Magnitude Response Plot
          • Time Domain Channel response
      • Wireless Channel Generation for a Dense High Indoor Factory Terrain Deployed at millimeter band.
        • Import Libraries
          • Import Python Libraries
          • Import 5G Toolkit Libraries
        • Simulation Parameters
        • Generate Antenna Arrays
        • Generate Simulation Layout
        • Generate Channel Parameters
        • Generate Channel Coefficients
        • Generate OFDM Channel
          • Frequency Domain : Magnitude Response Plot
          • Time Domain Channel response
      • Genarating the Wireless Channel for Indoor Open Office Terrain
        • Import Libraries
          • Import Python Libraries
          • Import 5G Toolkit Libraries
        • Simulation Parameters
        • Generate Antenna Arrays
        • Generate Simulation Layout
        • Generate Channel Parameters
        • Generate Channel Coefficients
        • Generate OFDM Channel
          • Frequency Domain : Magnitude Response Plot
          • Time Domain Channel response
      • Wireless Channel Generation for Outdoor Mobile User Connected to Rural Macro Site
        • Import Libraries
          • Python Libraries
          • 5G Toolkit Libraries
        • Simulation Parameters
        • Antenna Arrays
        • Node Mobility
        • Simulation Layout
        • Channel Parameters, Channel Coefficients and OFDM Channel
        • Variation in Channel Power across Time
        • Animation: Displaying the variation in receiver power of a UE time snapshots
          • Functions to Animate the Plot
          • Simulation Animation
          • Further Study
      • Channel Generation for Dual Mobility Scenarios in 5G and Beyond
        • Import Libraries
          • Import Python Libraries
          • Import 5G Libraries
        • Simulation Parameters
        • Generate Antenna Array
          • Generate Transmit Arrays
          • Generate Receiver Arrays
        • Generate the Routes
          • Generate the BS Routes
          • Generate the UE Routes
        • Simulation Layout
        • Channel Parameters, Channel Coefficients and OFDM Channel
        • Variation in Channel Power across Time
      • Wireless Channel Generation for Multiple Carrier Frequencies
        • Import Libraries
          • Python Libraries
          • 5G Toolkit Libraries
        • Simulation Parameters
        • Generate Antenna Array
        • Node Mobility
        • Generate Simulation Layout
        • Generate Channel Parameters
        • Generate Channel Coefficients
        • Generate OFDM Channel
          • Frequency Domain : Magnitude Response Plot
          • Time Domain Channel response
      • Propagation Characteristics of Outdoor Terrains
        • Simulation Parameters
        • Antenna Arrays
        • Simulation Layout
        • Compute the Rough estimate of the Probability of line of sight
        • Parameter Generator
        • Path-loss Characteristics
          • Distribution of Shadow fading
          • Probability Distribution of Rician K factor
        • Delay Spread Charateristics
        • Angular Spread Characteristics
          • Probability distribution of Azimuth-AoA
          • Probability distribution of Azimuth-AoD
          • Probability distribution of Elevation-AoA
          • Probability distribution of Elevation-AoD
      • Beam Domain and Delay Domain Sparsity in Wireless Channel Models
        • Import Libraries
          • Import Python Libraries
        • Import 5G Toolkit
        • Simulation Parameters
        • Antenna Arrays
          • Antenna Array at Rx
          • Antenna Array at Tx
        • Simulation Layout
        • Channel Parameters, Channel Coefficients and OFDM Channel
        • Demonstrating the Beam Domain Sparsity
        • Demonstrating the Delay Domain Sparsity
      • Generate Spatially Consistent Statistical Channels for Realistic Simulations
        • Import Libraries
          • Import Python Libraries
        • Import 5G Toolkit
        • Simulation Parameters
        • Antenna Arrays
          • Antenna Array at Rx
          • Antenna Array at Tx
        • Node Mobility
        • Simulation Layout
        • Channel Parameters, Channel Coefficients and OFDM Channel
        • Frequency Domain Consistency
          • Amplitude Spectrum: Each subcarrier accross time
          • Amplitude Spectrum: One subcarrier accross time
          • Amplitude Heatmap
          • Phase Spectrum
        • Doppler Domain Sparsity
        • Delay/Time Domain: Sparsity
    • Initial Access in 5G
      • Import Libraries
        • External Libaries
        • 5G Toolkit Modules
      • System Parameters
      • PBCH Information
      • Transmission-side Processing
        • Generate Primary Synchronization Sequence (PSS)
        • Generate Secondary Synchronization Sequence (SSS)
        • Generate Demodulation Reference Sequence (DMRS)
        • Generate the PBCH Payload
      • Constellation Diagram: Tx
        • Construct SSB Grid
        • Mapping SSB to Transmission Grid for ODFM
        • OFDM-Modulator
        • Analog Beamforming
      • Channel Generation
      • Pass Tx signal through Wireless Channel
      • Noise addition at receiver
      • SSB Receiver Side
        • Receiver combining
        • PSS Detection: largest peak
        • Largest peak
        • OFDM Demodulation: Resource Grid reconstruction
        • SSB Extaction from Resource Grid
        • Comparing Transmitted and Received SSB Grid
        • Spectrum Analysis
        • (SSS Detection: PSS channel assisted) + Cell-ID estimation
        • DMRS Parameters Detection + DMRS Sequence Generation
        • Channel Estimation and PBCH Symbol Equalization
      • Constellation Diagram: Rx
        • PBCH Decoding
        • Information Aggregation
      • Performance Evaluations: BER + Cell-IDs + DMRS Parameter Detection
        • Cell-IDs Detection
        • DMRS Parameter Detection
        • BER computation
    • Coverage Evaluation of Physical Broadcast Channels (PBCH) in 5G Networks
      • Import Libraries
        • Import Python Libraries
        • Import 5G Toolkit Libraiers
      • Simulation Parameters
      • Generate the Wireless Channel : CDL-A
      • Set SSB and Time-Frequency OFDM Configurations/Parameters
      • Generate the Synchronization Signal Block (SSB) Grid
      • Generate the Transmission Grid
      • Pass through the Wireless Channel
      • Display the Heatmap for the Received Grid
      • Link level Simulation: BLER for each SNR value
      • Block Error Rate Performance
      • Block Error Rate: Averaged over a 10000 batches
    • Link Level Simulation for Physical Downlink Control Channels
      • Import Libraries
        • Import Basic Python Libraries
      • Import 5G-Toolkit Libraries
      • Simulation Parameters
      • CORESET Parameters
      • Generate Wireless Channel: CDL-A
      • Link level Simulation: For each Aggregation level and Each SNR value
      • Reliability Performance: BER/BLER vs SNR
      • Reliability Performance: BER/BLER vs SNR for 20000 Batches
    • Link Level Simulation for Physical Downlink Shared Channel in 5G
      • Import Python Libraries
      • Import 5G-Toolkit Libraries
      • Simulation Parameters
      • Generate Channel
      • PDSCH Configurations
      • PDSCH Implementation
      • SVD based Precoding and Beamforming
      • Pass through the Wireless Channel
      • Recevier Side Processing
      • Simulation Results
      • Simulation Results: Averaged over 10000 batches
      • Save Results
    • BER Performance of PUCCH Format 0
      • Table of Contents
      • Import Libraries
        • Python Libraries
        • 5G ToolKit Libraries
      • Simulation Parameters
      • Format 0
      • Format 0 Decoder
      • M_CS Estimation
      • Information content based on MCS value
      • Simulation
      • Performance Evaluation
        • Performance Plot
    • SVD based Downlink Precoding and Combining for Massive MIMO 5G Networks
      • Import Python Libraries
        • Import Python Libraries
        • Import 5G-Toolkit Libraries
      • Simulation Parameters
      • Generate Wireless Channel: CDL-A
      • Link level simulation: BLER/BER/Throughput/SE vs SNR for different ranks
      • Simulation Results
      • Simulation Results: Averaged over 10000 batches
    • Type-1 codebook based Downlink Precoding and Combining for Massive MIMO 5G Networks
      • Import Python Libraries
        • Import Python Libraries
        • Import 5G-Toolkit Libraries
      • Simulation Parameters
      • Generate Wireless Channel: CDL-A
      • Link level simulation: BLER/BER/Throughput/SE vs SNR for different ranks
      • Simulation Results
      • Simulation Results: Averaged over 10000 batches
    • P1 Procedure: Beam management in 5G networks using SSB
      • Import librariers
        • Import Python libraries
        • Import 5G Toolkit libraries
      • Simulation Parameters
      • Generate Wireless Channel
      • Generate Time Frequency Parameters and MIB+ATI Parameters
      • Generate OFDM Resource/Transmission Grid
      • Pass through the Wireless Channel
      • Power Heatmap of Received Grid
      • Add Noise
      • RSRP Computation
      • Visualization of All Beam RSRP
      • Selected Base-station and Beam
      • Simulation Topology
    • Downlink Channel Estimation using CSI-RS
      • Import Python Libraries
        • Import Python Libraries
        • Import 5G-Toolkit Libraries
      • Simulation Parameters
      • Generate Channel
      • CSI Configurations
      • Generate CSI-RS Resource Grid
      • Generate the Transmit Grid
      • Transmit Beamforming
      • Pass through the Channel
      • Add noise at Receiver
      • Extract the Resource Grid
      • Estimate the Channel using CSI-RS
        • Display the Estimated channel
      • Estimate the Rank and Condition number
      • SVD of Channel and Condition number
      • Estimate the Precoder: Type-I
    • Search space, CORESET and blind decoding of PDCCH channels in 5G Networks
      • Import Libraries
        • Python Libraries
        • 5G Toolkit Libraries
      • Simulation Parameters
      • CORESET and Search Space Set Parameters
      • Transmitter Side Processing
      • Displaying Resource Grid
      • Wireless Channel : CDL-A
      • Receiver Side Processing and Blind Decoding of UE
    • Downlink Time of Arrival based Positioning in 5G and Beyond Networks
      • Positioning Procedure
      • Table of Content:
        • Import Libraries
      • Python Libraries
      • 5G Toolkit Libraries
        • Simulation Parameters
        • Channel Generation
      • Channel Parameters:
        • Position Reference Signal
        • OFDM Transmitter: Create Transmission Grid
      • Display Transmission Grid
        • Transmit Beamforming
        • Pass the Beamformed Grid Through Wireless Channel
        • Add Noise
        • Extracting the Resource Grid
        • Channel Estimation + Interpolation
      • Display the quality of Channel Estimates
        • ToA Estimation
      • Visualization: Time of Arrival locus Circles
        • Position Estimation + K-Best Measurement Selection (Genie Aided)
          • Measurement Selection:
      • Visualization of Positioning
        • Performance Analysis of Positioning Error for ToA based method
        • Performance Analysis: For 2000 UEs
        • Further Study
    • Downlink TDoA Based Positioning for Industrial IoT Devices in Millimeter Wave 5G Networks
      • Import Libraries
        • Python Libraries
        • 5G Toolkit Libraries
      • Simulation Parameters
      • Channel Generation
        • Channel Parameters:
      • Position Reference Signal
      • OFDM Transmitter: Create Transmission Grid
        • Display Transmission Grid
      • Transmit Beamforming
      • Pass the Beamformed Grid Through Wireless Channel
      • Add Noise
      • Extracting the Resource Grid
      • Channel Estimation + Interpolation
        • Display the quality of Channel Estimates
      • ToA Estimation
        • Visualization: Time of Arrival locus Circles
      • Position Estimation + K-Best Measurement Selection (Genie Aided)
        • Measurement Selection:
        • Visualization of Positioning
      • Performance Analysis of Positioning Error for ToA based method
      • Performance Analysis: For 2000 UEs
      • Further Study
    • Positioning the Outdoor UEs using 5G Urban Micro cell sites based Uplink Time Difference of Arrival (UL-TDoA) method
      • Import Libraries
        • Import Basic Python Libraries
        • Import 5G Toolkit Libraries
      • Simulation Parameters
      • Generate Wireless Channels
      • SRS Configurations
      • Slot by Slot Simulation
      • Position Estimation: Based on UL-ToA
      • Visualization of Estimated Position
      • Performance Analysis of Positioning Error for ToA based method
      • Performance Analysis: For 2000 UEs
    • Positioning the Indoor Open Office UEs using Uplink ToA method
      • Python Libraries
      • 5G Toolkit Libraries
      • Simulation Parameters
      • Generate Wireless Channels
      • SRS Configurations
      • Slot by Slot Simulation
      • Position Estimation: Based on UL-ToA
      • Visualization of Estimated Position
      • Performance Analysis of Positioning Error for Uplink-ToA based method
      • Performance Analysis: For 2000 UEs
    • Uplink AoA (UL-AoA) based Localization of the Indoor Factory UEs using millimeter 5G Networks
      • Python Libraries
      • 5G Toolkit Libraries
      • Simulation Parameters
      • Generate Wireless Channels
      • SRS Configurations
      • Slot by Slot Simulation
      • Position Estimation: Based on UL-ToA
      • Visualization: Direction of Arrival Locus Lines
      • Visualization of Estimated Position and its accuracy
      • Performance Analysis of Positioning Error for UL-AoA method
      • Performance Analysis for UL-AoA method: 1300 UEs
    • Downlink Angle of Departure based Positioning for Rural Macro Terrain in 5G and Beyond Network
      • Positioning Procedure
      • Table of Content:
        • Import Libraries
      • Python Libraries
      • 5G Toolkit Libraries
        • Simulation Parameters
        • Channel Generation
      • Channel Parameters:
        • Position Reference Signal
        • OFDM Transmitter: Create Transmission Grid
        • Compute the Measurement Windows
      • Transmit Beamforming
      • Add Noise
      • Pass the Beamformed Grid Through Wireless Channel
        • RSRP vs beam Index
      • AoD Estimation
        • Position Estimation + K-Best Measurement Selection (Genie Aided)
          • Measurement Selection:
      • Visualization of Positioning
        • Performance Analysis of Positioning Error for ToA based method
        • Performance Analysis for DL-AoD method: 2000 UEs
        • Further Study
  • Projects
    • Learning to Demap: Database Generation, Preprocessing, Postprocessing, Training, Validation and Inferences from the LLRNet
      • Table of Contents
      • Import Libraries
        • Import Python Libraries
        • Import 5G Toolkit Modules
      • Learning to Demap the Symbols
        • Input Output Mapping for M = 4
        • Input Output Mapping for M = 6
        • Input Output Mapping for M = 8
      • Throughput and BER Performance of LLRnet
        • Import Libraries
        • Simulation Parameters
        • PDSCH Parameters
        • LLRnet Parameters
          • Training Framework
          • Deployment Framework
      • Simulation Section
      • Performance Evaluation
        • Throughput vs SNR (dB) for 16-QAM, 64-QAM and, 256-QAM
        • Bit Error rate (BER) vs SNR (dB) for 16-QAM, 64-QAM and, 256-QAM
        • Block Error Rate (BLER) vs SNR (dB) for 16-QAM, 64-QAM and, 256-QAM
      • Performance Evaluation: 10000 batches and 64000 training samples for LLRNet
        • Throughput vs SNR (dB) for 16-QAM, 64-QAM and, 256-QAM.
        • Bit Error rate (BER) vs SNR (dB) for 16-QAM, 64-QAM and, 256-QAM.
        • Block Error rate (BER) vs SNR (dB) for 16-QAM, 64-QAM and, 256-QAM.
        • Complexity Analysis
      • Conclusion
        • Positives of the LLRnet:
        • Limitations of the LLRnet:
      • References:
    • Blockage Probability Analysis for RedCap Devices in 5G Networks
      • Analysis of Blocking Probability for different Coverage Conditions
        • Import Python Libraries
        • Import 5G Toolkit Libraries
        • Simulation Parameters
        • PDCCH Scheduling Parameters
        • PDCCH Scheduling for Good Coverage Scenarios
        • PDCCH Scheduling for Medium Coverage Scenarios
        • PDCCH Scheduling for Extreme Coverage Scenarios
        • Plotting the results
          • References
      • Variation in Blocking Probability with Different Aggregation Levels (ALs)
        • Python Libraries
        • 5G-Toolkit Libraries
        • Simulation Parameters
        • PDCCH Scheduling Parameters
          • Impact of AL 1
          • Impact of AL 2
          • Impact of AL 4
          • Impact of AL 8
          • Impact of AL 16
        • Plot the Variation in Blocking Probability with number of UEs for different Aggregation levels.
        • References
      • Analyzing the effect of Number of Candidates on Blocking Probability
        • Simulation Parameters
        • PDCCH Scheduling Parameters
        • Plot the Variation in Blocking Probability with number of PDCCH candidates
        • References
      • Analyzing the Impact of Scheduling Strategy on Blocking Probability
        • Python Libraries
        • 5G-Toolkit Libraries
        • Simulation Parameters
        • PDCCH Scheduling Parameters
        • Simulation for Scheduling Strategy-I
          • Blocking probability vs number of UEs to be scheduled.
        • Simulation for Scheduling Strategy-II
        • Plotting Blocking Probability vs Number of UEs for Scheduling Strategy
          • References
      • Analyze the Impact of UE Capability on Blocking Probability
        • Python Libraries
        • 5G-Toolkit Libraries
        • Simulation Parameters
        • PDCCH Scheduling Parameters
        • Simulating the Reference Case
          • Plot Blocking Probability for Different CORESET Sizes for Different UEs
        • Simulating Reduced Blind Decoding Case-A
        • Simulating Reduced Blind Decoding Case-B
        • Plot Blocking Probability for Different CORESET Sizes for Different UEs
          • References
      • Selection of minimum CORESET Size for a Given Target Block Probability
        • Python Libraries
        • 5G-Toolkit Libraries
        • Simulation Parameters
        • PDCCH Scheduling Parameters
        • Compute minimum coreset size for numUEs = 5.
        • Compute minimum coreset size for numUEs = 10.
        • Compute minimum coreset size for numUEs = 15.
        • Display Minimum CORESET size required to meet the Target Blocking Probability for different number of UEs.
          • References
    • Artificial Intelligence and Machine Learning (AI-ML) for CSI Compression and Reconstruction in 5G Networks
      • CSI Compression and Reconstruction using CSINet for TDD Massive MIMO 5G Networks
        • Import Libraries
          • Import Python Libraries
          • Import 5G Toolkit Libraries
        • Simulation Parameters
        • Wireless Channel Generation: CDL-A
        • Reconstrunction Performance of CSI-Net
        • PDSCH Parameters
        • PDSCH: Transmitter
        • SVD Based Beamforming: Perfect CSI
        • Pass through Channel
        • Link Level Simulation: SVD based Beamforming using Perfect CSI
        • SVD Based Beamforming: CSI Reconstructed using CSINet
        • Pass through Wireless Channel
        • Link Level Simulation: SVD based Beamforming using Imperfect CSI
      • Performance Evaluations
        • Throughput Evaluations
        • BLER Evaluations
        • References
      • Wireless Channel Dataset Generation for Training the AI based Models
        • Import Python Libraries
          • Import Basic Python LIbraries
          • Import 5G Toolkit Libraries
        • Simulation Parameters
        • Set Channel Parameters and Generate Common Parameters
        • Generate the Wireless Channels Databases and Preprocess it before storage.
        • Aggregate all the Datasets into a single Dataset
        • Display Sparsity of Wireless Channels
      • Training the CSINet
        • Import Libraries
          • Import Python Libraries
        • Important AI-ML Libraries
        • Load Datasets
        • Set Training Parameters
    • Comparative Study of Reed Muller codes, Polar Codes and LDPC codes
    • Link Level Simulations and Lnk budget Analysis for 5G Non Terrestrial Networks
      • Coverage Evaluation of Physical Broadcast Channels (PBCH) in 5G Non-Terrestrial Networks
        • Evaluation Methodology
          • Import Libraries
        • Import Python Libraries
        • Import 5G Libraries
          • Simulation Parameters
          • Generate NTN Channel
          • Generate MIB and PBCH Configurations for NTN
          • PSS, SSS, PBCH, PBCH-DMRS and SSB Generation
          • Transmission OFDM Resource Grid
          • Pass through the Wireless Channel
          • Heatmap of Received Grid
          • Link Level Simulation: PBCH
          • Displaying the Received Noisy Resource Grid
          • Displaying Noisy SSB Grid
          • Performance Evaluations: SNR vs BLER
      • Link Level Simulation for Physical Downlink Control Channels in 5G Non-Terrestrial Networks (NTN)
        • Import Libraries
          • Import Basic Python Libraries
        • Import 5G-Toolkit Libraries
        • Simulation Parameters
        • CORESET Parameters
        • Generate Wireless Channel: NTN-TDL-C
        • Link level Simulation: For each Aggregation level and Each SNR value
        • Reliability Performance: BER/BLER vs SNR
      • Link Level Simulation for Physical Downlink Shared Channel (PDSCH) in 5G Non Terrestrial Networks (NTN)
        • Import Python Libraries
        • Import 5G-Toolkit Libraries
        • Simulation Parameters
        • Generate Channel
        • PDSCH Configurations
        • PDSCH Implementation
        • Pass through the Wireless Channel
        • Recevier Side Processing
        • Simulation Results: Reliability
        • Simulation Results: Throughput
        • Simulation Results: Reliability (Averaged over 32000 batches)
        • Simulation Results: Throughput (Averaged over 32000 batches)
    • Hybrid Automatic repeat Request in 5G and Beyond
    • Constellation Learning in an AWGN Channel
      • PHY layer as AutoEncoder
      • Steps
        • Importing Libraries
        • Parameters of AutoEncoder
        • Training Data
        • Testing Data
        • Normalization Functions
        • Defining AutoEncoder Model
        • Training AutoEncoder
        • Defining Tx, Channel and Rx from Trained AutoEncoder
        • Block Error Rate (BLER) performance
        • Hamming Codes
      • Transmitter
      • BLER plot : comparison of AutoEncoder BLER with base line (n,k) Hamming Code BLER
        • Constellation Learning
      • learned constellation plot
        • References
    • Downlink Synchronization using SSB in 5G systems
    • Uplink Synchronization using PRACH in 5G systems
    • Performance comparison between different Positioning Methods for millimeter wave 5G Networks
      • Import Libraries
        • Import Python Libraries
        • Import 5G Toolkit Libraries
      • Simulation Parameters
      • Generate Wireless Channels
      • SRS Configurations
      • Slot by Slot Simulation
      • Position Estimation: Based on UL-ToA
      • Visualization of Estimated Position
      • Performance Analysis of Positioning Error for ToA based method
      • Positioning Results Averaged over 2000 UEs
  • Integration with Other Tools
    • Integration with SDRs
      • Time/OFDM Symbol Synchronization using PSS in 5G
        • Downlink Time/Frame Synchronization using PSS in 5G Networks
          • Import Libraries
          • Emulation Parameters
          • Generate SSB Parameters
          • Construct Transmission Grid and Generate Time Domain Samples
          • SDR-Setup Configurations
          • Transmission: SDR RF Transmitter
          • Reception: SDR RF Receiver
          • Time Synchronization: Based on PSS Correlation
          • Frame Synchronization: Visualization
          • Saving Running frames
        • [BS Side Implementation]-Downlink Time/Frame Synchronization using PSS in 5G Networks
          • Import Libraries
          • Emulation Parameters
          • Generate SSB Parameters
          • Construct Transmission Grid and Generate Time Domain Samples
          • SDR-Setup Configurations
          • Transmission: SDR RF Transmitter
        • [UE Side Implementation]-Downlink Time/Frame Synchronization using PSS in 5G Networks
          • Import Libraries
          • Emulation Parameters
          • SDR-Setup Configurations
          • Reception: SDR RF Receiver
          • Time Frequency Configurations
          • Time Synchronization: Based on PSS Correlation
      • Downlink Synchronization using SSB in 5G Networks
        • Downlink Synchronization in 5G Networks: SSB
          • Import Libraries
          • Emulation Configurations
          • Transmitter Implementation
          • Generate the SSB Grid for synchronization
          • Constellation Diagram
          • OFDM Modulation: Tx
          • SDR-Setup Configurations
          • Transmission: SDR RF Transmitter
          • Receiver Implementation
          • Reception: SDR RF Receiver
          • Time Synchronization: Based on PSS Correlation
          • OFDM Demodulation and SSB Extraction
          • SSB Grid: Transmitter and Receiver
          • Spectrum: Transmitted Grid and Received Grid
          • Parameter Estimation for SSB and PBCH
          • Channel Estimation and PBCH Symbol Equalization
          • PBCH Decoding and Constellation
          • Performance Verification
      • Downlink Data Communication using PDSCH in 5G Networks
        • Downlink Data Communication in 5G Networks
          • Import Python Libraries
          • 5G Toolkit Libraries
          • Simulation Parameters
          • PDSCH Transmitter Implementation
          • Generate the PDSCH related parameters: Use PDSCH Configurations
          • Generate the PDSCH Resource Grid
          • SSB Transmitter Implementation
          • Generate the SSB Resource Grid
          • SDR-Setup Configurations
          • Transmission: SDR RF Transmitter
          • Receiver Implementation: SSB
          • Reception: SDR RF Receiver
          • Time Synchronization: Based on PSS Correlation
          • PBCH Receiver
          • SSB Grid: Transmitter and Receiver
          • Spectrum: Transmitted Grid and Received Grid
          • PBCH Decoding and Constellation
          • Performance Verification
          • PDSCH Recourse Implementation
          • Extract PDSCH Resource Grid
          • PDSCH Receiver
          • Key Performance Indicators
    • Integration with MATLAB
      • Hamming Codes
        • Import Python Libraries: 5G-Toolkit and NumPy
        • Import Modules for Simulations: Demapper | Mapper | HammingEncoder | HammingDecoder
        • Hamming Code Configurations
        • Payload Generation
        • Hamming Encoder
        • Symbol Mapping
        • Link Level Simulation: SNR vs BLER
        • Performance Evaluation: SNR vs BLER
      • Downlink TDoA Based Positioning in 5G Networks
        • Import Python Libraries
        • Import 5G Toolkit Libraries
        • Simulation Parameters
        • Generate Wireless Channel
          • Generate Antenna Arrays
          • Generate Simulation Layout
          • Generate Channel Parameters | Generate Channels | OFDM Channel
        • Generate Positioning Reference Signal (PRS) and PRS Resource Grid
        • Generate OFDM Grid for Every BS
        • Beamform and Power Allocation
        • Pass through Channel
        • Add Noise
        • Extract Resource Grid
        • Channel Estimation using PRS
        • ToA Estimation
        • Position Estimation
        • Performance Evaluation
  • Learning Resources
    • Introductory Course on 5G Standards
    • Hardware Emulations using 5G Toolkit and SDRs
  • Tentetive list of Feature
    • In Progress (To be Released soon):
    • Next Quarter
    • Before September 2023
    • Before March 2024
  • Research work carried out using 5G Toolkit
  • Challenge Of this Week
    • Solution of this Months Problems
    • Arxiv-ed Challenges
  • License
    • Trademarks
    • Source Code
    • Content
  • Previous Versions
    • R23a
  • Discussion Forum
5G Toolkit
  • Tutorials
  • Link Level Simulation for Physical Downlink Control Channels

YouTube logo Watch on YouTube View on GitHub Download notebook

Link Level Simulation for Physical Downlink Control Channels

Link-level simulation in 5G networks involves simulating the Physical Downlink Control Channel (PDCCH), which is responsible for transmitting control information from the base station (gNB) to the user equipment (UE). PDCCH carries essential information such as resource allocation, scheduling assignments, and other control signaling necessary for UE communication and network operation.

In a link-level simulation of PDCCH, various parameters and characteristics of the channel are modeled and simulated to analyze the performance of the control channel under different conditions. This includes:

  1. Channel Modeling: Simulating the radio channel characteristics, including path loss, fading, delay spread, and Doppler effects, to accurately represent the wireless propagation environment.

  2. Modulation and Coding: Modeling the modulation and coding schemes (MCS) used for PDCCH transmission to evaluate the impact of different coding and modulation techniques on channel reliability and throughput.

  3. Resource Allocation: Simulating the resource allocation process to assess how resources are assigned to UEs based on scheduling decisions made by the gNB.

  4. Error Correction: Evaluating the effectiveness of error correction mechanisms such as Hybrid Automatic Repeat Request (HARQ) in recovering from transmission errors and improving overall reliability.

  5. Interference Analysis: Analyzing the impact of interference from neighboring cells or other UEs on PDCCH reception and performance.

  6. Beamforming and MIMO: Assessing the benefits of beamforming and Multiple Input Multiple Output (MIMO) techniques in enhancing PDCCH transmission and reception, especially in scenarios with high mobility or dense deployments.

Overall, link-level simulation of PDCCH in 5G networks provides valuable insights into the channel behavior, system performance, and optimization strategies for efficient control channel design and operation.

The flow of the tutorial as described as follows:

  • Import Libraries

    • Import Basic Python Libraries

    • Import 5G-Toolkit Libraries

  • Simulation Parameters

  • CORESET Parameters

  • Generate Wireless Channel: CDL-A

  • Link level Simulation: For each Aggregation level and Each SNR value

  • Reliability Performance: BER/BLER vs SNR

  • Reliability Performance: BER/BLER vs SNR for 20000 Batches

Import Libraries

Import Basic Python Libraries

[1]:
import numpy as np
import matplotlib as mpl

# %matplotlib widget
# %matplotlib inline
import matplotlib.pyplot  as plt
import matplotlib.patches as patches

import os
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'

Import 5G-Toolkit Libraries

[2]:
import sys
sys.path.append("../../../")

from toolkit5G.PhysicalChannels   import PDCCH, PDCCHDecoder
from toolkit5G.ResourceMapping    import ResourceMappingPDCCH, CORESET
from toolkit5G.ReceiverAlgorithms import ChannelEstimationAndEqualizationPDCCH
from toolkit5G.ChannelModels      import AntennaArrays, SimulationLayout, ParameterGenerator, ChannelGenerator
from toolkit5G.ChannelProcessing  import AddNoise

Simulation Parameters

[3]:
terrain          = "CDL-A"               # Propagation Scenario or Terrain for BS-UE links
carrierFrequency = 3.6*10**9             # carrier frequency in Hz
mu               = 0                     # numerology
scs              = (2**mu)*(15*10**3)    # sub-carrier spacing
slotNumber       = 0                     # slot number. Note that number of slots per sub-frame of 1 ms is 2**mu
numRBs           = 270                   # Please don't change this. The simulation will break down
Bandwidth        = numRBs*scs
nBSs             = 1                     # number of BSs
nUEs             = 1                     # number of UEs
bsArrayGeometry  = np.array([1,1,1,2,2], dtype=int)
ueArrayGeometry  = np.array([1,1,1,1,2], dtype=int)
Nt               = bsArrayGeometry.prod() # number of Tx antenna
Nr               = ueArrayGeometry.prod() # number of Rx antenna
Nfft             = 4096
nBatches         = 200

CORESET Parameters

[4]:
AggLevel         = np.array([1,2,4,8,16], dtype=int)

monitoringSymbolsWithinSlot = np.array([0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], dtype = int)
startSymIndex               = np.nonzero(monitoringSymbolsWithinSlot)[0][0]

cce_reg_Mapping = "interleaved"               # CCE to REG mapping type
L = np.array([2,6,6,6,6], dtype=int)          # REG-bundle size for each Aggregation level
R = np.array([3,2,2,2,2], dtype=int)          # Interleaver size for each Aggregation level
nshift = np.array([0,0,0,0,0], dtype=int)     # cyclic-shift index after interleaving

duration = np.array([1,1,2,2,2], dtype=int)   # duration of CORESET for each Aggregation level (AL)

fdr1 = np.array([1,0,0,0,0,0,0,0,0,
                 0,0,0,0,0,0,0,0,0,
                 0,0,0,0,0,0,0,0,0,
                 0,0,0,0,0,0,0,0,0,
                 0,0,0,0,0,0,0,0,0], dtype = int) # 1 one

fdr2 = np.array([1,1,0,0,0,0,0,0,0,
                 0,0,0,0,0,0,0,0,0,
                 0,0,0,0,0,0,0,0,0,
                 0,0,0,0,0,0,0,0,0,
                 0,0,0,0,0,0,0,0,0], dtype = int) # 2 ones

fdr4 = fdr2

fdr8 = np.array([1,1,1,1,0,0,0,0,0,
                 0,0,0,0,0,0,0,0,0,
                 0,0,0,0,0,0,0,0,0,
                 0,0,0,0,0,0,0,0,0,
                 0,0,0,0,0,0,0,0,0], dtype = int) # 4 ones

fdr16 = np.array([1,1,1,1,1,1,1,1,0,
                  0,0,0,0,0,0,0,0,0,
                  0,0,0,0,0,0,0,0,0,
                  0,0,0,0,0,0,0,0,0,
                  0,0,0,0,0,0,0,0,0], dtype = int) # 8 ones

frequencyDomainResources = np.array([fdr1,fdr2,fdr4,fdr8,fdr16], dtype=int) # freq Domain Resources for each AL

Generate Wireless Channel: CDL-A

[5]:
# Antenna Array at UE side
# assuming antenna element type to be "OMNI"
# with 2 panel and 2 single polarized antenna element per panel.
ueAntArray = AntennaArrays(antennaType = "OMNI",  centerFrequency = carrierFrequency,
                           arrayStructure  = ueArrayGeometry)
ueAntArray()

# # Radiation Pattern of Rx antenna element
# ueAntArray.displayAntennaRadiationPattern()


# Antenna Array at BS side
# assuming antenna element type to be "3GPP_38.901", a parabolic antenna
# with 4 panel and 4 single polarized antenna element per panel.
bsAntArray = AntennaArrays(antennaType = "3GPP_38.901", centerFrequency = carrierFrequency,
                           arrayStructure  = bsArrayGeometry)
bsAntArray()

# # Radiation Pattern of Tx antenna element
# bsAntArray[0].displayAntennaRadiationPattern()

# Layout Parameters
isd                  = 200         # inter site distance
minDist              = 10          # min distance between each UE and BS
ueHt                 = 1.5         # UE height
bsHt                 = 25          # BS height
bslayoutType         = "Hexagonal" # BS layout type
ueDropType           = "Hexagonal" # UE drop type
htDist               = "equal"     # UE height distribution
ueDist               = "equal"     # UE Distribution per site
nSectorsPerSite      = 1           # number of sectors per site
maxNumFloors         = 1           # Max number of floors in an indoor object
minNumFloors         = 1           # Min number of floors in an indoor object
heightOfRoom         = 3           # height of room or ceiling in meters
indoorUEfract        = 0.5         # Fraction of UEs located indoor
lengthOfIndoorObject = 3           # length of indoor object typically having rectangular geometry
widthOfIndoorObject  = 3           # width of indoor object
forceLOS             = False       # boolen flag if true forces every link to be in LOS state

# simulation layout object
simLayoutObj = SimulationLayout(numOfBS = nBSs,
                                numOfUE = nUEs,
                                heightOfBS = bsHt,
                                heightOfUE = ueHt,
                                minUEBSDistance = minDist,
                                ISD = isd,
                                layoutType = bslayoutType,
                                ueDropMethod = ueDropType,
                                UEdistibution = ueDist,
                                UEheightDistribution = htDist,
                                numOfSectorsPerSite = nSectorsPerSite,
                                ueRoute = None)

simLayoutObj(terrain = terrain, carrierFreq = carrierFrequency,
             ueAntennaArray = ueAntArray, bsAntennaArray = bsAntArray,
             indoorUEfraction = indoorUEfract,
             lengthOfIndoorObject = lengthOfIndoorObject,
             widthOfIndoorObject  = widthOfIndoorObject, forceLOS = forceLOS)



paramGen = simLayoutObj.getParameterGenerator()

# paramGen.displayClusters((0,0,0), rayIndex = 0)
channel = paramGen.getChannel()
Hf      = channel.ofdm(scs, Nfft, normalizeChannel = True)[0,0,0]

print(" Hf shape: "+str(Hf.shape)) #(nUEs,Nfft, Nr, Nt)
 Hf shape: (1, 4096, 2, 4)

Link level Simulation: For each Aggregation level and Each SNR value

[6]:
numPoints  = 10
SNRdB      = np.array([np.linspace(-5, 10, numPoints),
                       np.linspace(-7, 7, numPoints),
                       np.linspace(-10, 5, numPoints),
                       np.linspace(-15, 3, numPoints),
                       np.linspace(-15, 1, numPoints)])

SNR        = 10**(SNRdB/10)

codedBER   = np.zeros((AggLevel.size, numPoints))
uncodedBER = np.zeros((AggLevel.size, numPoints))
bler       = np.zeros((AggLevel.size, numPoints))

rnti       = int(1 + np.random.randint(65518, dtype = int)) # rnti
nID        = int(np.random.randint(65536, dtype = int))     # scrambling-ID from scrambling ratematched Bits
bwpOffset  = 0

for al in range(AggLevel.size):
    print("##############################################################")
    print("Simulation: ["+str(al)+"] for    AL = "+str(AggLevel[al]))
    coresetObj        = CORESET(duration[al],frequencyDomainResources[al])
    coresetPRBIndices = coresetObj(cce_REG_MappingType = cce_reg_Mapping,
                                   reg_BundleSize=L[al], interleaverSize = R[al], shiftIndex = nshift[al])
    numPDCCHsymbols  = int(54*AggLevel[al]) # number of REs occupied by PDCCH data (QPSK symbols)
    numPDCCHdmrs     = int(18*AggLevel[al]) # number of REs occupied by PDCCH DMRS symbols
    chosenCCEindices = np.arange(AggLevel[al])

    E        = numPDCCHsymbols*2   # number of target Bits
    K        = 20                  # payload size in bits
    dciBits  = np.random.randint(0, 2, [nBatches, K])


    pdcch = PDCCH(K, E, rnti, nID)
    symb  = pdcch(dciBits)


    rmPDCCH      = ResourceMappingPDCCH(mu, frequencyDomainResources[al], duration[al], monitoringSymbolsWithinSlot)
    resGrid      = rmPDCCH(symb, cce_reg_Mapping, L[al], R[al], nshift[al], slotNumber, nID, chosenCCEindices)
    numRBs       = int(resGrid.shape[-1]/12)
    numSymbols   = resGrid.shape[-2]

    txGrid    = np.zeros(resGrid.shape[0:-1]+(Nfft,),dtype = np.complex64)

    #loading resource grid in transmission grid
    txGrid[..., bwpOffset:bwpOffset+12*numRBs] = resGrid


    Xf     = np.sqrt(1/Nt)*(txGrid[...,np.newaxis]).repeat(Nt, axis = -1)

    Y  = ((Hf[:,np.newaxis,np.newaxis,...]@Xf[np.newaxis,...,np.newaxis])[...,0])[0]
    Hp = np.sqrt(1/Nt)*((Hf.sum(axis = -1).transpose(0,2,1)[:,:,bwpOffset:bwpOffset+12*numRBs])[0]).sum(axis=0)[np.newaxis,np.newaxis,:]

    for i in range(numPoints):
        print("********************************************************")
        print("Simulation: ["+str(i)+"] for      SNRdB = "+str(SNRdB[al,i]))
        # Added noise
        Yf     = AddNoise(False)(Y, 1/SNR[al,i], 0)
        rxGrid = Yf[...,bwpOffset:bwpOffset+12*numRBs,:]


        ##### Equalization #####
        channelEst    = ChannelEstimationAndEqualizationPDCCH(duration[al], frequencyDomainResources[al], monitoringSymbolsWithinSlot)
        equalized_Sym = channelEst(rxGrid.sum(axis=-1),
                                   cce_reg_Mapping, L[al], R[al], nshift[al],
                                   slotNumber, nID, Hf = Hp)


        ##### Decoding #######
        pdcchDecoder = PDCCHDecoder(K, E, rnti, nID, decoderType="SCL", demappingMethod = "app")
        rdciBits     = pdcchDecoder(equalized_Sym, SNR[al,i])

        ##### Bit Errors and CRC Check #######
        bitEst        = pdcchDecoder.llr.copy()
        bitEst[bitEst > 0] = 1
        bitEst[bitEst < 0] = 0
        uncodedBER[al,i] = np.mean(np.abs(bitEst - pdcch.dciSCR))
        codedBER[al,i]   = np.mean(np.abs(rdciBits - dciBits))
        bler[al,i]       = 1-pdcchDecoder.check.mean()

        print("Simulation: "+str([al,i])+" for       BLER = "+str(bler[al,i]))

        print("********************************************************")
        print()

##############################################################
Simulation: [0] for    AL = 1
********************************************************
Simulation: [0] for      SNRdB = -5.0
Simulation: [0, 0] for       BLER = 0.965
********************************************************

********************************************************
Simulation: [1] for      SNRdB = -3.333333333333333
Simulation: [0, 1] for       BLER = 0.765
********************************************************

********************************************************
Simulation: [2] for      SNRdB = -1.6666666666666665
Simulation: [0, 2] for       BLER = 0.24
********************************************************

********************************************************
Simulation: [3] for      SNRdB = 0.0
Simulation: [0, 3] for       BLER = 0.015000000000000013
********************************************************

********************************************************
Simulation: [4] for      SNRdB = 1.666666666666667
Simulation: [0, 4] for       BLER = 0.0
********************************************************

********************************************************
Simulation: [5] for      SNRdB = 3.333333333333334
Simulation: [0, 5] for       BLER = 0.0
********************************************************

********************************************************
Simulation: [6] for      SNRdB = 5.0
Simulation: [0, 6] for       BLER = 0.0
********************************************************

********************************************************
Simulation: [7] for      SNRdB = 6.666666666666668
Simulation: [0, 7] for       BLER = 0.0
********************************************************

********************************************************
Simulation: [8] for      SNRdB = 8.333333333333334
Simulation: [0, 8] for       BLER = 0.0
********************************************************

********************************************************
Simulation: [9] for      SNRdB = 10.0
Simulation: [0, 9] for       BLER = 0.0
********************************************************

##############################################################
Simulation: [1] for    AL = 2
********************************************************
Simulation: [0] for      SNRdB = -7.0
/home/tenet/Startup/Packages/5G_Toolkit/version15/Tutorials/Simulations/Tutorial-11[Link_Level_and_System_Level_Simulation_for_Physical_Downlink_Control_Channels]/../../../toolkit5G/ChannelCoder/PolarCoder/polarDecoder.py:494: UserWarning: Required ressource allocation is large for the selected blocklength. Consider option `cpu_only=True`.
  warnings.warn("Required ressource allocation is large " \
Simulation: [1, 0] for       BLER = 0.825
********************************************************

********************************************************
Simulation: [1] for      SNRdB = -5.444444444444445
Simulation: [1, 1] for       BLER = 0.31499999999999995
********************************************************

********************************************************
Simulation: [2] for      SNRdB = -3.888888888888889
Simulation: [1, 2] for       BLER = 0.03500000000000003
********************************************************

********************************************************
Simulation: [3] for      SNRdB = -2.333333333333333
Simulation: [1, 3] for       BLER = 0.0
********************************************************

********************************************************
Simulation: [4] for      SNRdB = -0.7777777777777777
Simulation: [1, 4] for       BLER = 0.0
********************************************************

********************************************************
Simulation: [5] for      SNRdB = 0.7777777777777777
Simulation: [1, 5] for       BLER = 0.0
********************************************************

********************************************************
Simulation: [6] for      SNRdB = 2.333333333333334
Simulation: [1, 6] for       BLER = 0.0
********************************************************

********************************************************
Simulation: [7] for      SNRdB = 3.8888888888888893
Simulation: [1, 7] for       BLER = 0.0
********************************************************

********************************************************
Simulation: [8] for      SNRdB = 5.444444444444445
Simulation: [1, 8] for       BLER = 0.0
********************************************************

********************************************************
Simulation: [9] for      SNRdB = 7.0
Simulation: [1, 9] for       BLER = 0.0
********************************************************

##############################################################
Simulation: [2] for    AL = 4
********************************************************
Simulation: [0] for      SNRdB = -10.0
Simulation: [2, 0] for       BLER = 0.745
********************************************************

********************************************************
Simulation: [1] for      SNRdB = -8.333333333333334
Simulation: [2, 1] for       BLER = 0.25
********************************************************

********************************************************
Simulation: [2] for      SNRdB = -6.666666666666666
Simulation: [2, 2] for       BLER = 0.020000000000000018
********************************************************

********************************************************
Simulation: [3] for      SNRdB = -5.0
Simulation: [2, 3] for       BLER = 0.0
********************************************************

********************************************************
Simulation: [4] for      SNRdB = -3.333333333333333
Simulation: [2, 4] for       BLER = 0.0
********************************************************

********************************************************
Simulation: [5] for      SNRdB = -1.666666666666666
Simulation: [2, 5] for       BLER = 0.0
********************************************************

********************************************************
Simulation: [6] for      SNRdB = 0.0
Simulation: [2, 6] for       BLER = 0.0
********************************************************

********************************************************
Simulation: [7] for      SNRdB = 1.6666666666666679
Simulation: [2, 7] for       BLER = 0.0
********************************************************

********************************************************
Simulation: [8] for      SNRdB = 3.333333333333334
Simulation: [2, 8] for       BLER = 0.0
********************************************************

********************************************************
Simulation: [9] for      SNRdB = 5.0
Simulation: [2, 9] for       BLER = 0.0
********************************************************

##############################################################
Simulation: [3] for    AL = 8
********************************************************
Simulation: [0] for      SNRdB = -15.0
Simulation: [3, 0] for       BLER = 0.975
********************************************************

********************************************************
Simulation: [1] for      SNRdB = -13.0
Simulation: [3, 1] for       BLER = 0.745
********************************************************

********************************************************
Simulation: [2] for      SNRdB = -11.0
Simulation: [3, 2] for       BLER = 0.22999999999999998
********************************************************

********************************************************
Simulation: [3] for      SNRdB = -9.0
Simulation: [3, 3] for       BLER = 0.015000000000000013
********************************************************

********************************************************
Simulation: [4] for      SNRdB = -7.0
Simulation: [3, 4] for       BLER = 0.0
********************************************************

********************************************************
Simulation: [5] for      SNRdB = -5.0
Simulation: [3, 5] for       BLER = 0.0
********************************************************

********************************************************
Simulation: [6] for      SNRdB = -3.0
Simulation: [3, 6] for       BLER = 0.0
********************************************************

********************************************************
Simulation: [7] for      SNRdB = -1.0
Simulation: [3, 7] for       BLER = 0.0
********************************************************

********************************************************
Simulation: [8] for      SNRdB = 1.0
Simulation: [3, 8] for       BLER = 0.0
********************************************************

********************************************************
Simulation: [9] for      SNRdB = 3.0
Simulation: [3, 9] for       BLER = 0.0
********************************************************

##############################################################
Simulation: [4] for    AL = 16
********************************************************
Simulation: [0] for      SNRdB = -15.0
Simulation: [4, 0] for       BLER = 0.44999999999999996
********************************************************

********************************************************
Simulation: [1] for      SNRdB = -13.222222222222221
Simulation: [4, 1] for       BLER = 0.05500000000000005
********************************************************

********************************************************
Simulation: [2] for      SNRdB = -11.444444444444445
Simulation: [4, 2] for       BLER = 0.0050000000000000044
********************************************************

********************************************************
Simulation: [3] for      SNRdB = -9.666666666666668
Simulation: [4, 3] for       BLER = 0.0
********************************************************

********************************************************
Simulation: [4] for      SNRdB = -7.888888888888889
Simulation: [4, 4] for       BLER = 0.0
********************************************************

********************************************************
Simulation: [5] for      SNRdB = -6.111111111111111
Simulation: [4, 5] for       BLER = 0.0
********************************************************

********************************************************
Simulation: [6] for      SNRdB = -4.333333333333334
Simulation: [4, 6] for       BLER = 0.0
********************************************************

********************************************************
Simulation: [7] for      SNRdB = -2.555555555555557
Simulation: [4, 7] for       BLER = 0.0
********************************************************

********************************************************
Simulation: [8] for      SNRdB = -0.7777777777777786
Simulation: [4, 8] for       BLER = 0.0
********************************************************

********************************************************
Simulation: [9] for      SNRdB = 1.0
Simulation: [4, 9] for       BLER = 0.0
********************************************************

Reliability Performance: BER/BLER vs SNR

[7]:
fig, ax = plt.subplots()

ls1 = ["-r", "--g", ":m", "-k","-b"]
ls2 = ["-r", "--g", ":m", "-k","-b"]
ls3 = ["-r", "--g", ":m", "-k","-b"]
markers = ["s", "o", "P", "X", "d"]


for al in range(AggLevel.size):

#     ax.semilogy(SNRdB[al], uncodedBER[al], ls1[al], marker = markers[al], label="uncodedBER-"+str(al))
    ax.semilogy(SNRdB[al], bler[al], ls3[al], marker = markers[al], label="BLER for AL = "+str(AggLevel[al]))
#     ax.semilogy(SNRdB[al], codedBER[al], ls2[al], marker = markers[al], mec = "white", label="codedBER-"+str(al))

ax.legend(loc="best")

#     ax.set_xticks(SNRdB[r])
ytck = (0.1**(np.arange(1, 8))).repeat(9)*np.tile(np.arange(10, 1,-1), [7])
ytck = np.concatenate([[1],ytck])
ax.set_yticks(ytck, minor=True)
ax.set_yticks(0.1**(np.arange(0, 7)), minor=False)
ax.set_ylim([10**-3,1.1])

ax.grid(which = 'minor', alpha = 0.25, linestyle = '--')
ax.grid(which = 'major', alpha = 1)

ax.set_xlabel("SNR (dB)")
ax.set_ylabel("Bit/Block error rate (BER/BLER)")
ax.set_title("BER/BLER vs SNR (dB) Performance")

plt.show()

../../../_images/api_Tutorials_Tutorial10_Link_Level_and_System_Level_Simulation_for_Physical_Downlink_Control_Channels_13_0.png

Reliability Performance: BER/BLER vs SNR for 20000 Batches

[8]:
dB         = np.load("Databases/PDCCH_LLS.npz")

uncodedBER = dB["uncodedBER"]
codedBER   = dB["codedBER"]
bler       = dB["bler"]
SNRdB      = dB["SNRdB"]

fig, ax = plt.subplots()

ls1 = ["-r", "--g", ":m", "-k","-b"]
ls2 = ["-r", "--g", ":m", "-k","-b"]
ls3 = ["-r", "--g", ":m", "-k","-b"]
markers = ["s", "o", "P", "X", "d"]


for al in range(AggLevel.size):

#     ax.semilogy(SNRdB[al], uncodedBER[al], ls1[al], marker = markers[al], label="uncodedBER-"+str(al))
    ax.semilogy(SNRdB[al], bler[al], ls3[al], marker = markers[al], label="BLER for AL = "+str(AggLevel[al]))
#     ax.semilogy(SNRdB[al], codedBER[al], ls2[al], marker = markers[al], mec = "white", label="codedBER-"+str(al))

ax.legend(loc="best")

#     ax.set_xticks(SNRdB[r])
ytck = (0.1**(np.arange(1, 8))).repeat(9)*np.tile(np.arange(10, 1,-1), [7])
ytck = np.concatenate([[1],ytck])
ax.set_yticks(ytck, minor=True)
ax.set_yticks(0.1**(np.arange(0, 7)), minor=False)
ax.set_ylim([10**-3,1.1])

ax.grid(which = 'minor', alpha = 0.25, linestyle = '--')
ax.grid(which = 'major', alpha = 1)

ax.set_xlabel("SNR (dB)")
ax.set_ylabel("Bit/Block error rate (BER/BLER)")
ax.set_title("BER/BLER vs SNR (dB) Performance")

plt.show()
../../../_images/api_Tutorials_Tutorial10_Link_Level_and_System_Level_Simulation_for_Physical_Downlink_Control_Channels_15_0.png
[ ]:

Previous Next

© Copyright 2022-2024, Gigayasa Wireless Private Limited.

Built with Sphinx using a theme provided by Read the Docs.