De-Spreading
- In this example,
interlacedTransmission
- Interlaced Transmission is disabledpucch_ResourceCommon
- Common resource configurationintraSlotFreqHopping
- Disabling Intra Slot Frequency Hopping
pucch_ResourceCommon = True #Selecting the resource set
interlacedTransmission = True #Enabling/Disabling the Interlaced Transmission
intraSlotFreqHopping = False #Enabling/Disabling the Intra Slot Frequency Hopping
numofSymbols = None #Number of Symbols
symbolIndex_start = None #Starting Symbol Index
indexPUCCH = 3 #Index of the resource set, if Common resource configuration is enabled
timedomainOCC = 0 #Orthogonal Cover code Index
rDemOp --> Sequences after De-mapping
deSpreadingObj = DeSpreadingFormat1(pucch_ResourceCommon, intraSlotFreqHopping) #De-Spreading Object
despreadedSeq = deSpreadingObj(rDemOp, timedomainOCC, symbolIndex_start, numofSymbols, indexPUCCH) #Despreads the spreaded sequence
- class toolkit5G.ResourceMapping.DeSpreadingFormat1(pucch_ResourceCommon=False, intraSlotFreqHopping=False, seqLength=12, numOfHops=2, maxNumPRBs=275)[source]
This class despreads the spreaded sequence
The spreaded sequence is despreaded by multiplying with the orthogonal sequence
The spreading factors ranges from 1 to 7
- Parameters:
intraSlotFreqHopping (bool) – The parameter ‘intraSlotFreqHopping’ indicates whether the Intra Slot Frequency Hopping is enabled/disabled. By default it is disabled.
pucch_ResourceCommon (bool) – The parameter ‘pucch_ResourceCommon’ indicates whether PUCCH Format 0 uses common resource configuration or dedicated resource set for resource allocation. By default it is set that PUCCH Format 0 is used after dedicated resource allocation
numOfHops (int) – The parameter ‘numOfHops’ is the maximum number of intra slot hopping. It is initilised with 2.
seqLength (int) – This parameter indicates the length of the sequence generated. It is initialised with 12 as the length of the sequence generated tends to be 12. It takes a positive scalar or numpy integer
maxNumPRBs (int) – This parameter indicates maximum number of Physical Resource Blocks considered within a Bandwidth Part. It is initialised with 275, considering 275 Physical Resource Blocks within a BandwidthPart. It takes the positive scalar or numpy integer
- Input:
numpy ndarray
complex
Dimension (Number of Batches, Spreading factor * Number of Interlaced Resource Blocks, if interlaced based transmission is enabled/Number of PRBs allocated * Sequence Length)
- Output:
numpy ndarray
complex
Dimension (Number of Batches, Number of Interlaced Resource Blocks, if interlaced based transmission is enabled/Number of Physical Resource Blocks allocated * Sequence Length)
- Raises:
TypeError – Passing arguments with invalid data type
ValueError – Passing arguments with invalid value
- property SpreadingFactor
This method outputs the Spreading Factor
- Return type:
Based on the hopping status, the spreading factor is selected
- property indexPUCCH
This parameter is used to select the resource from the common resource configuration provided by SIB1.
Acceptable data type is scalar or numpy integer.
It can take values between 0 and 15. But UE does not expect to indicate 15.
- property maxNumPRBs
Maximum number of PRBs within a Bandwidth Part.
Acceptable data type is a positive scalar or numpy integer.
- property numberOfSymb
Number of Symbols.
Acceptable data type is scalar integer or numpy integer.
It can take any value between 1 and 2, based on the starting symbol index.
- property start_SymbIndex
Starting Symbol Index.
Acceptable data type is scalar integer or numpy integer.
It can take any value between 0 and 13
- property timedomainOCC
Orthogonal Cover Code.
Acceptable data type is scalar integer or numpy integer.
It can take any value between 0 and 6
References
[1]. (3GPP TS 38.211 version 17.1.0 Release 17) 5G;NR;Physical channels and modulation ‘6.3.2.4 PUCCH Format 1’
[2]. (3GPP TS 38.213 version 16.5.0 Release 16) 5G;NR;Physical layer procedures for control ‘ 9.2.1 PUCCH Resource Sets’
[3]. Book - 5G NR in Bullets, Edition 1